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Abstract

This paper develops a stepped modeling sequence to clarify how endogenous distributive
and financial cycles can generate persistent pressure toward asset inequality, even when ag-
gregate macro–financial dynamics remain bounded. The analysis begins from the canonical
growth-cycle model of Goodwin [1967], in which distributive conflict between employment
and the wage share produces locally neutral closed orbits around an interior fixed point.
It then introduces a Goodwin–Minsky extension in the spirit of Minsky [1986] and Keen
[1995, 2013], adding debt as a stock variable and a bounded, nonlinear investment func-
tion. This mutation breaks the closed-orbit genericity of the Goodwin model and yields
a three-dimensional macro–financial system whose local dynamics may converge, sustain
oscillations, or amplify into instability, depending on institutional and financial parameters.

Building on this core, the paper re-centers the analysis on asset inequality by devel-
oping a constrained finance-augmented Goodwin–Minsky system. Without expanding the
state space beyond employment, the wage share, and leverage, the model introduces an
explicit financial outside option and a profitability-dependent portfolio wedge that gener-
ates endogenous financial pressure and asset-income claims. This construction preserves the
Hopf-based regime classification of the baseline model while altering its economic interpreta-
tion: the same local stability boundaries that separate macro regimes also partition regimes
by the persistence of financial pressure and the conditions under which asset-income claims
systematically outpace macro growth.

The contribution of the paper is analytical. It provides a transparent identification
device linking endogenous macro–financial regimes to asset-inequality pressure, prior to the
introduction of a full stock–flow consistent wealth-accumulation sector. By comparing the
Jacobian structure and Hopf bifurcation logic of the baseline and finance-augmented systems,
the paper establishes a foundation for subsequent work that maps these regimes into explicit
wealth dynamics under accounting consistency.
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1 Introduction

A recurring tension in contemporary capitalist economies is that aggregate dynamics can appear
bounded or even stabilizing, while asset concentration continues to rise as a cumulative outcome.
Employment, output growth, and leverage may fluctuate within admissible ranges for long
periods, yet the distribution of asset claims shifts persistently in favor of wealth holders. This
paper develops a stepped modeling sequence designed to make that tension analytically explicit.
The goal is not to claim that wealth concentration has no feedback on macroeconomic outcomes
in reality, but to construct an identification device: a transparent sequence of closures that
separates (i) the stability and bifurcation logic of a low-dimensional macro–financial core from
(ii) the mechanisms through which those dynamics generate sustained pressure toward asset
inequality.

The point of departure is the canonical growth-cycle model of Goodwin [1967]. The Goodwin
system formalizes distributive conflict as a two-dimensional interaction between the employment
rate and the wage share. Under its tight closure, the model yields closed orbits around an
interior fixed point: endogenous cycles arise without exogenous shocks, but their amplitudes
are not selected by dissipative forces internal to the model. This local neutrality is precisely
what makes the Goodwin model a useful benchmark. It isolates a conflict-driven mechanism
linking functional income distribution to profit-led accumulation and, through employment, to
trend-plus-cycle movements in living standards.

A large literature has examined the empirical and theoretical status of Goodwin-type dy-
namics. Empirical contributions emphasize the sensitivity of estimated cycles to functional
forms, parameter stability, and measurement conventions [Araújo et al., 2019]. Related theoret-
ical work shows that once finance is introduced, trajectories may resemble Goodwin oscillations
while the underlying mechanism is no longer the canonical two-dimensional center [Stockham-
mer and Michell, 2017]. These results motivate a structural approach: treat the Goodwin cycle
as the baseline mechanism, then relax closures one at a time so that changes in qualitative
dynamics can be attributed to specific additions rather than to undisciplined complexity.

The first closure change is financial. Following the Goodwin–Minsky tradition in the spirit
of Minsky [1986] and the Keen-style formulations [Keen, 1995, 2013], the paper introduces
debt as a stock variable linking current accumulation decisions to future financial obligations.
Investment becomes a bounded, nonlinear function of net profitability, breaking the mechani-
cal identity between contemporaneous profits and accumulation. Once debt enters, instability
is no longer a matter of initial conditions around a neutral center. Depending on parame-
ters governing investment responsiveness and leverage-contingent wage discipline, the resulting
three-dimensional system can converge to an interior steady state, sustain bounded oscillations,
or evolve toward amplifying macro–financial cycles. The classification of these regimes is gov-
erned by the local geometry of the system, diagnosed through the Jacobian, Routh–Hurwitz
conditions, and a Hopf functional reported in Appendix A.

The second step of the paper re-centers the analysis on asset inequality before introducing
a full wealth-accumulation sector. The Goodwin–Minsky core captures endogenous macro–
financial instability, but by itself it does not identify how cycles, stabilization, or breakdown
translate into persistent asymmetries in asset claims. To address this gap, Section 4 develops
a constrained Goodwin–Minsky–finance core that preserves the three-dimensional state space
(e, ω, d) while embedding an explicit financial outside option. An exogenous benchmark re-
turn rF and a profitability-dependent portfolio wedge generate an endogenous financial-income
channel and a financial-pressure index that enters wage discipline. This construction does not
add new state variables, but it changes the economic interpretation of the Jacobian and the
Hopf bifurcation: the same local stability boundary that classifies macro regimes also parti-
tions regimes by the implied persistence of financial pressure and the conditions under which
asset-income claims systematically outpace macro growth.
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The contribution of this constrained core is analytical. It shows how asset inequality can
be treated as an induced consequence of endogenous distributive–financial cycles, their ampli-
fication into instability, or their collapse into stable stagnation, rather than as an exogenous
trend. By keeping the state space fixed, the model allows a direct comparison between the Hopf
structure of the baseline Goodwin–Minsky system and the finance-augmented core, clarifying
what changes when financial outside options are made explicit. The full Jacobian structure and
bifurcation conditions for this constrained core are reported in Appendix B.

The paper is intentionally incomplete with respect to wealth accumulation itself. The con-
strained core isolates the financial-return mechanism that generates persistent asset-income
pressure, but it does not yet introduce a stock–flow consistent wealth sector with explicit asset
prices and heterogeneous balance sheets. That extension is the next step of the project and the
motivation for ongoing simulation work. The role of the present paper is to provide the ana-
lytical backbone: a clean mapping from endogenous macro–financial regimes to the conditions
under which asset inequality can emerge and persist.

The remainder of the paper is organized as follows. Section 2 presents the canonical Goodwin
growth-cycle model. Section 3 introduces the Goodwin–Minsky extension with debt dynamics
and documents its local stability properties. Section 4 develops the constrained asset-inequality
core and compares its Jacobian and Hopf interpretation to the baseline model. The conclusion
summarizes the identification logic and outlines the next steps toward a full stock–flow consistent
treatment of wealth inequality.

2 The Goodwin Model

The growth-cycle model introduced by Goodwin [1967] provides the canonical baseline for for-
malizing distributive conflict in a growing capitalist economy. The benchmark isolates a minimal
interaction between employment and functional income distribution that is sufficient to gener-
ate endogenous cyclical dynamics under a closed accumulation rule. In this paper, thGoodwin
system serves as the reference structure against which subsequent extensions with finance, debt
dynamics, and wealth accumulation are assessed.

Production is characterized by a fixed-coefficients technology. Output is constrained by
capital and effective labour in fixed proportions,

Y (t) = min

{
K(t)

σ
, a(t)L(t)

}
, (1)

where σ > 0 denotes the capital–output ratio and a(t) labour productivity. Labour productivity
and the labour force grow at constant exogenous rates,

ȧ

a
= α, (2)

Ṅ

N
= β, (3)

with α, β > 0. Capital accumulation is profit-determined: all profits are invested and the
profit share governs the rate of capital growth. Finally, real wage growth responds positively to
labour-market tightness through a Phillips-curve mechanism.

The dynamics are governed by two state variables. The employment rate is

e ≡ L

N
, (4)

and the wage share is

ω ≡ W

Y
, W ≡ wL, (5)
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with normalized prices P = 1 and w the real wage. The profit share is π ≡ 1− ω.
Under the assumptions above, output and capital grow at the profit-determined rate,

gY ≡ Ẏ

Y
=
K̇

K
=
π

σ
=

1− ω

σ
. (6)

Employment dynamics follow from comparing profit-led accumulation growth to the exogenous
growth of effective labour supply. The reduced-form evolution of the employment rate is

ė =

(
1− ω

σ
− (α+ β)

)
e. (7)

Real wage growth follows a Phillips curve,

ẇ

w
= Φ(e), Φ′(e) > 0, (8)

which implies wage-share dynamics

ω̇ =
[
Φ(e)− α

]
ω. (9)

Equations (15)–(16) define the canonical Goodwin system.
An interior stationary point (e∗, ω∗) satisfies

Φ(e∗) = α, (10)

1− ω∗

σ
= α+ β. (11)

Hence
ω∗ = 1− σ(α+ β), (12)

and e∗ is pinned down by the wage-setting schedule via (10). Provided 0 < e∗ < 1 and
0 < ω∗ < 1, the fixed point is economically admissible.

Linearization around (e∗, ω∗) yields a center: the Jacobian has zero trace and positive de-
terminant, implying purely imaginary eigenvalues. As a result, the system generates closed
orbits in (e, ω) space. Cycle amplitudes are not selected by parameters; they depend on initial
conditions. Figure 1 illustrates this neutrality: trajectories form nested closed cycles around
the interior fixed point.

The canonical cycle admits a transparent mapping from distributive conflict to accumulation
and living standards. When employment is high, wage growth accelerates via Φ(e), raising the
wage share and compressing profits. Lower profits reduce the accumulation rate (14), which in
turn reduces employment growth through (15). As employment falls, wage pressure weakens,
the wage share declines, profitability recovers, and accumulation strengthens. This feedback
produces persistent oscillations in both employment and functional distribution.

Figure 2 complements the phase diagram by translating the cycle into macroeconomic ob-
servables. The wage share ω(t) oscillates around ω∗ and, through (14), generates corresponding
oscillations in the profit-led accumulation rate gY (t). To relate the cycle to living standards,
note that under the Leontief full-capacity branch Y = aL, so output per capita satisfies

Y

N
= a e. (13)

Since a(t) grows exogenously at rate α while e(t) oscillates endogenously, output per capita
displays a trend increase with cyclical modulation, as shown in the bottom panel of Figure 2.

As a benchmark, the canonical Goodwin model is intentionally restricted. It abstracts from
debt and financial stocks, from explicit investment behaviour beyond the profit-investment
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closure, from demand constraints, and from household balance-sheet heterogeneity. These ex-
clusions are design choices that isolate the distributive mechanism and generate neutral cycles
around an interior fixed point. Subsequent sections relax these closures, first by introducing
debt-finance dynamics, opening the model to Minsky understanding of financial instability, as
first introduceed by Keen [1995]. Later, through a set of stock-flow consistent system of equa-
tions, the model is further extended to study conditions under which distributive cycles can be
associated with endogenous dynamics of wealth inequality .

Figure 1: Canonical Goodwin phase dynamics: closed orbits around (e∗, ω∗).
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Figure 2: Distribution, accumulation, and output per capita in a mild canonical cycle.
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3 Financial Instability: The Goodwin–Minsky model

The canonical Goodwin cycle is a two-dimensional benchmark that organizes capitalist dynam-
ics around a specific closure: profits are fully re-invested, while capital accumulation creates
productive capacities through a fixed-coefficients production function without mismatches of
demand and supply. When that closure is relaxed, distributive dynamics are no longer insu-
lated from balance-sheet commitments. The Goodwin–Minsky models first introduced by Keen
[1995, 2013] exploits this shift in closure by introducing debt as a stock variable that links
current accumulation decisions to future financial obligations aiming to identify dynamcis of
financial stability a-la Minsky [1986]. The resulting models preserve the labor-market mecha-
nism of the Goodwin cycle while moving beyond its flow-only structure of the system of state
variables: instability is not imposed through exogenous shocks or ad hoc nonlinearities, but
emerges endogenously from stock–flow interactions between profits, investment, and debt.

With fixed coefficients, a constant capital–output ratio σ > 0, and the full-investment-of-
profits closure, output growth in the canonical Goodwin model is

Ẏ

Y
≡ gY =

1− ω

σ
. (14)

Let gn ≡ α + β denote the exogenous growth rate of effective labor supply (productivity plus
labor-force growth). The Goodwin dynamics for employment e and wage share ω can be written
as

ė =

(
1− ω

σ
− gn

)
e, (15)

ω̇ =
[
Φ(e)− α

]
ω. (16)

This two-dimensional system implies a closed-orbit property around the interior stationary
point: trajectories near that point are closed, and cycle amplitude is determined by initial
conditions rather than by dissipative forces internal to the model.

The Goodwin–Minsky mutation begins by breaking the mechanical identity between contem-
poraneous profits and accumulation. Investment is specified as a share of output that depends
positively on profitability. In the Keen-style specification adopted here, the investment share
κ( ·) is bounded and nonlinear:

κ(r) = κmin +
κmax − κmin

1 + exp{−λ(r − r0)}
, κmin < κ(r) < κmax, λ > 0. (17)

With a depreciation rate δ ≥ 0, and fixed capital-output ratio σ output growth becomes defined
by:

Ẏ

Y
≡ gY (r) =

κ(r)

σ
− δ. (18)

This modification preserves the distributive structure of the Goodwin model while breaking
its flow-only accumulation logic: accumulation is no longer mechanically constrained to equal
profits.

Allowing accumulation to deviate from contemporaneous profits requires external finance.
Let d denote a debt-to-output ratio. The profit share remains

π(ω) ≡ 1− ω, (19)

but the profitability object variable for accumulation is the net profit rate, which is reduced by
the interest burden on debt:

r(ω, d) =
π(ω)− id

σ
=

1− ω − id

σ
, i ≥ 0. (20)
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Debt evolves by a stock–flow accounting law that closes the financial side of the model:

ḋ = r(ω, d)
)
− π(ω) + id− d gY

(
r(ω, d)

)
(21)

Debt introduces an intertemporal asymmetry absent from the Goodwin baseline: wages and
profits are flow variables, while d accumulates over time and feeds back through interest obliga-
tions and slow-downs in economic growth. In this sense, the system shifts along a complexity
vector: the labor-market mechanism is retained, while balance-sheet commitments become a
co-determining state.

To preserve the Goodwin labor-market mechanism while allowing institutional feedback
from leverage, I introduce a a debt-contingent term into the Phillips curve defining a leverage
threshold d̄ > 0, normalized to 1, and a logistic function which imposes a smooth switch in a
similar fashion to the Buffet index of stock-value to output:

S(d) =
1

1 + exp {−ψ (d− 1)}
, ψ > 0, 0 < S(d) < 1. (22)

Wage growth is then specified as

Φ(e, d) = ϕ0 + ϕ1e− ηS(d), ϕ1 > 0, η ≥ 0. (23)

The interpretation is that tight labor markets raise wage pressure through ϕ1e, while d < 1
has a positive effect on wage growth, and d > 1 a negative one. This switching mechanism
in the model can be interpreted as loose space to acquire debt and pump-up demand, but
too high financial obligations discipline it through demand disciplined mechanisms (such as
fiscal consolidation or rising inflation due debt-commitments in foreign currency). Overall,
the interpretation is that debt as a share of output growth might reinforce or discipline wage
share growth through demand channels. The parameters η and ψ govern the strength of this
institutional restraint around d ≃ d̄ normalized to 1 in this formulation.

I combine the modified accumulation rule, the labor-market mechanism, and the debt stock
law, which yields a three-dimensional dynamical system in employment, distribution, and lever-
age:

ė =
(
gY (r)− gn

)
e, (24)

ω̇ =
(
Φ(e, d)− α

)
ω, (25)

ḋ = κ(r)− π(ω) + id− d gY (r), (26)

where r = r(ω, d) is given by (20), gY (r) by (18), and Φ(e, d) by (23). Relative to the Goodwin
benchmark, the mutation is minimal in form but maximal in implication: the distributive
mechanism is retained, yet the phase portrait is no longer confined to the two-dimensional
closed-orbit property.

Introducing debt alters the qualitative behavior of the system. The model is no longer
characterized by a closed-orbit property as the generic local outcome. Instead, depending on
parameter values, trajectories may converge to an interior stationary point, exhibit persistent
oscillations, or diverge toward explosive leverage dynamics. Instability arises endogenously from
the interaction of distributive conflict and balance-sheet dynamics: debt transforms contempo-
raneous profit–investment relations into intertemporal commitments, and net profitability trans-
mits financial fragility into accumulation. The discipline mechanism can counteract or reshape
this instability by altering the wage-share feedback once leverage approaches the threshold.

For analytical transparency, the full local stability conditions (Jacobian structure, Routh–
Hurwitz inequalities, and Hopf functional) are reported in Appendix A. In this Keen-ish 3D
structure, the Hopf bifurcation theorem allows to identify the bifurcation space as follows

H = E(FD + CB), (27)
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Where:

A = − e∗
κr(r

∗)

σ2
, B = − e∗

i κr(r
∗)

σ2
, (28)

C = ω∗ ϕ1, D = −ω∗ η Sd(d
∗), (29)

E = 1−
(
1− d∗

σ

)
κr(r

∗)

σ
, F = (i− gn)−

(
1− d∗

σ

)
i κr(r

∗)

σ
. (30)

Figure 3 illustrates a bounded cyclical regime generated by the stock–flow interaction be-
tween net profitability and accumulation: (e, ω, d) remain in the admissible region while κ(r),
gY (r), and r(ω, d) oscillate around their balanced-growth values. The leverage-triggered disci-
pline term shifts the wage-share feedback when d approaches d̄, preventing explosive leverage
paths in this parameterization. The corresponding ypc(t) series inherits its dominant trend from
exp(αt), with cyclical modulation through e(t).

Figure 3: Stable cyclical regime under leverage-triggered discipline (ψ = 45). The state variables
remain bounded in the admissible region, and the finance block oscillates around the balanced-
growth anchor.

(a) States: d(t), e(t), ω(t). (b) Finance block: gY (t), κ(t), π(t), r(t).

(c) 3D trajectory in (e, ω, d). (d) Per-capita output level ypc(t) (normalized).
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Figure 4 illustrates a regime in which the interior steady state is not attracting: starting
from a small perturbation, the trajectory moves outward and the oscillations in (e, ω, d) amplify
over time. The finance block provides the transmission channel: widening fluctuations in net
profitability r(ω, d) induce wider movements in κ(r) and therefore in gY (r), feeding back into
employment dynamics through ė = (gY − gn)e and into leverage dynamics through ḋ = κ(r)−
π(ω)+ id−dgY (r). In this parameterization, lower discipline steepness ψ weakens the leverage-
triggered restraint in Φ(e, d), so leverage does not settle to an interior level and the system
evolves toward higher-amplitude debt–distribution–employment cycles within the simulation
horizon.

Figure 4: Amplifying cycle regime with weak leverage-triggered discipline (ψ = 10). The
trajectory moves away from the interior steady state and evolves toward higher-amplitude debt–
distribution–employment oscillations within the simulation horizon.

(a) States: d(t), e(t), ω(t). (b) Finance block: gY (t), κ(t), π(t), r(t).

(c) 3D trajectory in (e, ω, d). (d) Per-capita output level ypc(t) (normalized).

Despite its richer dynamics, Keen’s Goodwin–Minsky model remains limited in two respects.
First, households are treated homogeneously, and distributive conflict is summarized exclusively
by the wage share. Second, while debt affects macroeconomic stability through net profitability
and interest obligations, the model does not track asset ownership, wealth accumulation, or
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heterogeneous balance-sheets for stock-flow consistency.
The Goodwin–Minsky framework demonstrates that once debt is introduced as a stock vari-

able, distributive cycles are no longer dynamically neutral. Financial commitments transform
the Goodwin system into a dissipative one, allowing for amplification, instability, and crisis.
This extension succeeds in explaining why capitalist economies may exhibit endogenous finan-
cial fragility without relying in exogenous shocks.

However, the scope of the Goodwin–Minsky model remains limited in a crucial respect.
Although debt redistributes income over time through interest payments and affects macroe-
conomic stability, households are treated as a homogeneous sector. Distributional conflict is
summarized exclusively by the wage share, and the ownership of assets and liabilities is not
modeled explicitly. As a result, the framework cannot distinguish between instability in aggre-
gate dynamics and divergence in household wealth positions.

This limitation is not merely descriptive. Financial instability and wealth inequality are ana-
lytically distinct phenomena. An economy may experience rising leverage and cyclical instability
without generating persistent divergence in household net worth, just as wealth inequality may
increase in the absence of overt financial crises. The Goodwin–Minsky framework captures the
former but remains silent on the latter.

Section III addresses this gap by introducing two types of households: asset owners and
non-asset owners, and wealth dynamics while preserving the distributive and financial mech-
anisms in (24)–(26) from the Goodwin–Minsky model. The objective is not to generalize the
framework, but to construct a specific model in which wealth inequality emerges endogenously
as a consequence of distributive cycles, debt accumulation, and asset ownership. By treating
wealth inequality as a driven accumulation outcome rather than an exogenous trend or steady-
state property, the analysis connects financial instability to systematic divergence in household
wealth under distinct growth regimes, rather than only at moments of crisis.

In this way, Section III builds directly on the mechanisms developed in Sections I and II,
extending them only where necessary to explain a phenomenon that the existing framework
cannot account for on its own

4 Asset Inequality as an Induced Outcome of Endogenous Cy-
cles under Stock-Flow Consistent Constraints

The Goodwin–Minsky model developed in the previous section establishes how distributive
conflict and debt dynamics can generate endogenous cycles, convergence, or instability through
a three-dimensional stock–flow system. That framework is sufficient to classify macro–financial
regimes via local stability and Hopf bifurcation analysis. It is not, however, sufficient to track
the accumulation of asset inequality as a cumulative outcome of those regimes.

This section introduces a constrained analytical core whose purpose is to bridge that gap.
The objective is not to add wealth accumulation directly, but to isolate the financial-return
mechanism through which endogenous macro cycles, their amplification, or their stabilization
generate persistent asymmetries in asset claims. These asymmetries will form the backbone of
the stock–flow consistent wealth-inequality block introduced in the next section.

The strategy is deliberate. By restricting the state space to three dimensions while embed-
ding a financial outside option, the model preserves the Hopf bifurcation logic of the Goodwin–
Minsky system while re-centering its interpretation: cycles and regime shifts are no longer
only about employment and distribution, but about the conditions under which asset income
persistently outpaces the growth of the economy.
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4.1 From macro–financial cycles to asset inequality

The state vector remains
x(t) = (e(t), ω(t), d(t)),

with employment e, wage share ω, and debt-to-output ratio d. Net profitability is

r(ω, d) =
1− ω − id

σ
, (31)

and accumulation follows the bounded investment rule

g(r) =
κ(r)

σ
− δ, (32)

with κ(r) defined as in the previous section.
The key extension relative to the baseline Goodwin–Minsky model is the introduction of an

external financial return benchmark rF . This benchmark does not enter accumulation directly.
Instead, it governs the allocation of profit claims between productive accumulation and financial
income through the logistic portfolio-share function

λ(r, rF ) =
1

1 + exp{−ψ(r − rF )}
, ψ > 0. (33)

Financial income is then defined as

ιF = r
λ

1− λ
, (34)

and normalized by the natural growth rate to obtain the financial pressure index

f =
ιF
gn
. (35)

The interpretation is straightforward. When net profitability approaches or exceeds the
financial benchmark rF , a rising share of profit claims is diverted toward financial income. This
does not alter the accumulation rule mechanically, but it reshapes the distributional environment
in which accumulation takes place. In particular, it creates a wedge between output growth and
the growth of asset claims, a necessary condition for persistent asset inequality.

4.2 Financial discipline and wage dynamics

Financial conditions discipline the labor market through the composite index

Z(d, f) =
1

1 + exp{ϕ3[(d− 1) + ϕ4(f − 1)]}
, (36)

which rises with leverage and financial pressure. Wage dynamics follow

ω̇ = ω
(
ϕ0 + ϕ1e− α− ϕ2Z(d, f)

)
, (37)

with ϕ1 > 0 fixed exogenously.
Relative to the Goodwin–Minsky model of the previous section, this specification shifts the

role of finance. Debt no longer disciplines wages only through interest burdens and growth slow-
downs, but also through a financial outside option whose strength depends on the gap between
productive and financial returns. The consequence is that macro–financial cycles can generate
sustained periods in which financial claims grow faster than output even when employment and
the wage share remain bounded.
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4.3 Core dynamics and interior steady state

The reduced system is

ė = (g(r)− gn)e, (38)

ω̇ = ω(ϕ0 + ϕ1e− α− ϕ2Z), (39)

ḋ = κ(r)− (1− ω) + id− dg(r). (40)

An interior steady state satisfies g(r∗) = gn, implying

κ(r∗) = σ(gn + δ). (41)

The associated steady-state values of d∗, ω∗, and e∗ follow from accounting identities and the
wage-setting condition, as in the previous section.

Crucially, the existence of an interior steady state in (e, ω, d) does not imply neutrality
of asset income. Even at a macro–financial steady state, the financial pressure index f∗ and
the discipline term Z(d∗, f∗) can remain strictly positive, sustaining a persistent gap between
financial and productive income flows.

4.4 Jacobian structure and comparison with the Goodwin–Minsky model

Linearization around the interior steady state yields a 3× 3 Jacobian that is formally similar to
that of the Goodwin–Minsky model. The system remains dissipative, and local dynamics are
classified by the Routh–Hurwitz conditions and a Hopf bifurcation theorem.

The crucial difference lies in the composition of the Jacobian. In the baseline Goodwin–
Minsky model, instability is driven by feedbacks between profitability, accumulation, and debt.
In the constrained core developed here, those feedbacks remain, but they are augmented by
derivatives of the financial allocation function λ(r, rF ) and the pressure index f . As a result,
the Hopf boundary now partitions regimes not only by macro stability, but by the implied
dynamics of financial claims.

A Hopf bifurcation in this reduced system therefore has a dual interpretation. As in the
previous section, it marks the transition between convergent, cyclical, and unstable macro dy-
namics. In addition, it identifies thresholds beyond which endogenous cycles generate sustained
financial pressure, laying the groundwork for persistent asset inequality even in regimes that
appear macro-stable.

The full Jacobian, derivative structure, and Hopf functional are reported in Appendix B. The
key implication is structural: asset inequality does not require explosive macro dynamics. It can
emerge as a cumulative outcome of bounded cycles or of stabilization paths that nevertheless
preserve a positive financial outside option.

5 Conclusion

This paper developed a stepped modeling sequence to clarify a simple but stubborn tension:
capitalist economies can exhibit bounded macro–financial dynamics while the distribution of
asset claims shifts persistently in favor of wealth holders. The objective was not to deny that
wealth concentration can feed back into macro outcomes in reality, but to construct an identifi-
cation device: a transparent set of closures that separates (i) the stability and bifurcation logic
of a low-dimensional macro–financial core from (ii) the distributional mechanisms that translate
those dynamics into persistent asset-inequality pressure.

The sequence proceeds in three steps. Section 2 established the canonical benchmark: the
Goodwin [Goodwin, 1967] growth-cycle model, where distributive conflict between employment
and the wage share generates locally neutral closed orbits around an interior fixed point. The
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analytical value of this benchmark is precisely its restriction. It isolates the conflict-driven
feedback from employment to wages, from wages to profits, and from profits to accumulation,
while abstracting from balance sheets and financial commitments.

Section 3 introduced the Goodwin–Minsky mutation in the spirit of Minsky [1986] and Keen
[1995, 2013]. Debt enters as a stock variable and investment becomes a bounded nonlinear
function of net profitability, breaking the Goodwin model’s generic closed-orbit property. The
resulting three-dimensional system can converge, sustain bounded oscillations, or move toward
amplifying macro–financial cycles depending on institutional and financial parameters. This
regime classification is governed by local geometry: the Jacobian, Routh–Hurwitz conditions,
and the Hopf functional reported in Appendix A.

Section 4 re-centered the analysis on the distributional object of interest before introducing
a full wealth-accumulation sector. The section developed a constrained asset-inequality core
that preserves the three-dimensional state space (e, ω, d) but embeds an exogenous benchmark
financial return rF and a profitability-dependent portfolio wedge λ(r, rF ). This wedge gener-
ates an endogenous financial-income channel and a financial-pressure index f that enters wage
discipline through the composite Z(d, f). The key contribution of this step is interpretive: it
keeps the Hopf-based regime logic of the Goodwin–Minsky system, while changing what the
same stability boundary means. In the baseline model, a Hopf boundary partitions regimes by
macro stability (convergence versus sustained cycles versus instability). In the asset-inequality
core, the same boundary additionally partitions regimes by the implied persistence of finan-
cial pressure and the conditions under which asset-income claims systematically outpace macro
growth, even when the macro state remains bounded. The full Jacobian structure and Hopf
conditions for this constrained core are therefore placed in Appendix B.

Two implications follow. First, asset inequality can be treated as an induced consequence
of endogenous distributive–financial cycles and their regime shifts, rather than as an exogenous
trend appended after the macro analysis. Second, the relevant bifurcation logic is not only
about whether the macro–financial system converges or cycles, but about whether the regime
implied by the same local geometry sustains a positive financial outside option and persistent
financial pressure.

The paper is intentionally incomplete in one important respect, and that incompleteness is
the point of the research design. The constrained core isolates the financial-return mechanism
while holding the state space fixed; it does not yet introduce a full stock–flow consistent wealth-
accumulation block with asset prices and heterogeneous balance sheets. That block is the next
step and the purpose of the ongoing simulation work: to map the macro–financial regimes iden-
tified here into explicit wealth trajectories and inequality dynamics while preserving accounting
discipline. Once that extension is in place, the stepped architecture developed in this draft will
provide a clean bridge between (i) regime classification in the macro–financial core and (ii) the
cumulative distributional outcomes that follow from it.
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A Goodwin-Minsky: Model specification and Stability Analysis

A.1 State vector, domains, and exogenous growth

The state vector is x(t) = (e(t), ω(t), d(t)), where the employment rate satisfies e(t) ∈ (0, 1),
the wage share satisfies ω(t) ∈ (0, 1), and the debt-to-output ratio satisfies d(t) > 0. Exogenous
growth rates are labor productivity growth α > 0 and labor-force growth β ≥ 0, implying the
natural growth rate

gn ≡ α+ β > 0. (42)

A.2 Auxiliary definitions: profits, net profitability, investment, output growth

Define the profit share as
π(ω) ≡ 1− ω. (43)

Let σ > 0 denote the (constant) capital–output ratio and i ≥ 0 the interest rate. Net profitabil-
ity is summarized by the net profit rate

r(ω, d) =
π(ω)− id

σ
=

1− ω − id

σ
. (44)

Investment is specified as a bounded share of output, κ(r) ∈ (κmin, κmax), with a logistic
Keen form

κ(r) = κmin +
κmax − κmin

1 + exp{−λ(r − r0)}
, λ > 0. (45)

Let δ ≥ 0 denote depreciation. Capacity-branch output growth is

gY (r) =
κ(r)

σ
− δ. (46)

A.3 Debt leverage threshold and wage restraint)

Let d̄ > 0 denote the leverage threshold and define the leverage index B(d) ≡ d/d̄. The smooth
discipline switch is

S(d) =
1

1 + exp{−ψ(d− d̄)}
=

1

1 + exp{−ψ(d− 1)}
, ψ > 0, 0 < S(d) < 1. (47)

Wage inflation is specified by a disciplined Phillips term

Φ(e, d) = ϕ0 + ϕ1e− ηS(d), ϕ1 > 0, η ≥ 0. (48)

A.4 Core dynamics (3D system)

The ODE system is

ė =
(
gY (r)− gn

)
e, (49)

ω̇ =
(
Φ(e, d)− α

)
ω, (50)

ḋ = κ(r)− π(ω) + id− d gY (r), (51)

with r = r(ω, d) from (44) and gY (r) from (46).

A.5 Slow-finance option (time-scale separation)

An optional slow-finance parameter τd ≥ 1 rescales debt adjustment:

ḋ =
1

τd

(
κ(r)− π(ω) + id− d gY (r)

)
. (52)

This affects adjustment speeds but does not alter the interior steady state.
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A.6 Interior steady state and admissibility gates (closed form)

An interior steady state (e∗, ω∗, d∗) satisfies ė = ω̇ = ḋ = 0 with e∗ ∈ (0, 1), ω∗ ∈ (0, 1), d∗ > 0.
From ė = 0, the balanced-growth condition implies

gY (r
∗) = gn ⇐⇒ κ(r∗) = σ(gn + δ) ≡ κtarget. (53)

Gate 1 (investment feasibility):

κmin < κtarget < κmax. (54)

Define

s ≡ κtarget − κmin

κmax − κmin
∈ (0, 1). (55)

Logistic inversion yields the steady-state net profit rate

r∗ = r0 +
1

λ
log

(
s

1− s

)
. (56)

Using κ(r∗) = κtarget and (44), the steady-state debt ratio is

d∗ =
κtarget − σr∗

gn
. (57)

Gate 2 (interior leverage): d∗ > 0.
From ḋ = 0 and gY (r

∗) = gn,

0 = κtarget − π(ω∗) + id∗ − d∗gn, (58)

π(ω∗) = κtarget + d∗(i− gn), (59)

ω∗ = 1− κtarget − d∗(i− gn). (60)

Gate 3 (interior distribution): 0 < ω∗ < 1.
From ω̇ = 0, Φ(e∗, d∗) = α, so

e∗ =
α− ϕ0 + ηS(d∗)

ϕ1
. (61)

Gate 4 (interior employment): 0 < e∗ < 1. (Optional plausibility screening can restrict e∗

to an interval without affecting algebra.)

A.7 Jacobian at the steady state (sparse form and components)

Let J denote the Jacobian of (ė, ω̇, ḋ) evaluated at (e∗, ω∗, d∗). The Jacobian has the sparse
structure

J =

0 A B
C 0 D
0 E F

 . (62)

Define the derivatives

κr(r) ≡
∂κ

∂r
= (κmax − κmin)λ ℓ(r)

(
1− ℓ(r)

)
, ℓ(r) ≡ 1

1 + exp{−λ(r − r0)}
, (63)

Sd(d) ≡
∂S

∂d
=
ψ

d̄
S(d)

(
1− S(d)

)
. (64)

Evaluated at (e∗, ω∗, d∗), the Jacobian components are

A = − e∗
κr(r

∗)

σ2
, B = − e∗

i κr(r
∗)

σ2
, (65)

C = ω∗ ϕ1, D = −ω∗ η Sd(d
∗), (66)

E = 1−
(
1− d∗

σ

)
κr(r

∗)

σ
, F = (i− gn)−

(
1− d∗

σ

)
i κr(r

∗)

σ
. (67)
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A.8 Routh–Hurwitz conditions and Hopf functional

Let the characteristic polynomial be

det(sI − J) = s3 + a1s
2 + a2s+ a3. (68)

For the sparse Jacobian (62), the coefficients are

a1 = −F, a2 = −AC − ED, a3 = C(AF −BE). (69)

Local asymptotic stability requires the Routh–Hurwitz inequalities

a1 > 0, a2 > 0, a3 > 0, a1a2 > a3. (70)

Define the Hopf functional
H ≡ a1a2 − a3. (71)

In the sparse structure (62), H admits the identity

H = E(FD + CB). (72)

A Hopf boundary occurs at H = 0 subject to the remaining sign restrictions in (70).

A.9 Hopf transversality (finite-difference check)

For a bifurcation parameter µ ∈ {ψ, η, λ, i, . . .}, transversality can be assessed by recomputing
the steady state and H(µ) for perturbed values and forming the symmetric finite difference

dH

dµ
≈ H(µ+ h)−H(µ− h)

2h
, (73)

where each H(µ ± h) is computed after re-solving (e∗, ω∗, d∗) via the admissible steady-state
construction above.

A.10 Simulation outputs and normalization used in figures

Numerical simulation integrates (49)–(51) over a grid t ∈ [0, T ] with step ∆t. Per-capita output
is reported as an index

ypc(t) = a(t)e(t), a(t) = exp(αt), ynormpc (t) =
ypc(t)

ypc(0)
. (74)

For each simulation tag, the standard figure set comprises: state trajectories (e, ω, d), finance-
block series (r, π, κ, gY ), normalized ypc, and the 3D trajectory in (e, ω, d).

B Analytical Details: Jacobian and Hopf Conditions for the
Asset-Inequality Core

This appendix reports the analytical details underlying the reduced core introduced in Sec-
tion ??. The Jacobian is obtained by explicit differentiation of r(ω, d), κ(r), λ(r, rF ), and
Z(d, f), accounting for the dependence of financial pressure f on profitability.

The characteristic polynomial takes the form

det(λI − J) = λ3 + a1λ
2 + a2λ+ a3,
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with coefficients a1, a2, a3 reported explicitly in terms of structural parameters and steady- state
values. Local stability requires the Routh–Hurwitz conditions

a1 > 0, a2 > 0, a3 > 0, a1a2 > a3.

A Hopf bifurcation occurs when

H = a1a2 − a3 = 0,

holding the remaining sign restrictions fixed. Relative to the Goodwin–Minsky model of Ap-
pendix A, the expression for H includes additional terms proportional to the derivatives of
λ(r, rF ) and Z(d, f), reflecting the role of the financial outside option. These terms do not
alter the dimensionality of the system, but they reorient the economic interpretation of the
bifurcation toward asset-income dynamics.
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